
About diffusion processes in disordered systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 859

(http://iopscience.iop.org/0305-4470/21/3/044)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 21 (1988) 859-863. Printed in the UK 

COMMENT 

About diffusion processes in disordered systems 
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Via Marzolo 8, 35131 Padova, Italy 

Received 17 September 1987 

Abstract. Different diffusion processes can be defined on random networks like the infinite 
incipient clusters at percolation threshold. The long-time behaviour of two such processes 
is shown to be the same. In particular the mean-square displacements and the autocorrela- 
tion function scale with the same exponents in the two cases. 

Diffusion problems on random networks have attracted much attention in the last 
decade. Since de Gennes (1976) introduced the problem of a particle (the ant) moving 
randomly on a random environment (the labyrinth) some progress has been made 
(Straley 1980, Alexander and Orbach 1982, Rammal and Toulouse 1983, Rammal et 
a1 1985, de Arcangelis et al 1985). In particular scaling laws have been conjectured 
for diffusion processes on statistical or deterministic self-similar structures (fractals) 
(Alexander and Orbach 1982, Rammal and Toulouse 1983). 

However, different diffusion problems can be defined on structures with 
inhomogeneous coordination depending on the jumping probabilities from a site to 
one of its nearest neighbours ( N N )  (even if simple generalisations should be easy to 
deal with, we shall not consider them here). 

We shall be interested in two types of random walks nicknamed the myopic and 
blind ant problems (Mitescu and Roussenq 1983; see also Majid et al 1984, Havlin 
and Ben-Avraham 1987). 

Since we are now accustomed to find surprises for critical phenomena on fractal 
lattices with respect to those on regular lattices (Rammal et a1 1985, de Arcangelis et 
al 1985) it is legitimate to suspect that the myopic and blind ants could have different 
scaling behaviours at long times. 

There is numerical evidence that the two ants moving on the infinite incipient 
percolation cluster in two dimensions lie on the same universality class (Majid et al 
1984). The goal of this paper is to prove, in all generality, that the myopic and blind 
ant define the same critical exponents at large time. 

The proof is not difficult and is based on the formal solution for the probability 
distribution in terms of a sum over a set of walks. The main ingredient is that this set 
of walks is the same for the two types of ant while the statistical weight of one ant 
can be bounded from below and from above by the statistical weight of the other ant. 
To be definite let us work with the discrete-time version of the master equation obeyed 
by the probability distribution p , ( n )  that the ant is at site x at ‘time’ n 

(1) PX( + 1) = P x (  n 1 + c I W,?P,(  n 1 - WYXPX( n 1). 
Y 
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wXy is the probability to jump from the site y to the site x and it is different from zero 
only when x and y are N N  sites of the network. If the network is random we have 
also to average p , (  n )  with a network-dependent statistical weight. 

In  the following we shall work with the generating function of p , ( n )  (discrete 
Laplace transform) defined as 

If the ant is at xo at n = 0, i.e. p , ( n  = 0) = S,, then (1) in terms of P , ( w )  becomes 

where the dependence of P,(w) on x,, is understood. The myopic and blind ant 
(Mitescu and Roussenq 1983) have the following jumping probabilitiest: 

w,, = 1/ z,, (40) 

W',> = l / z  (4b) 

respectively where z ,  is the coordination number of site y, i.e. the number of N N  sites 
of y belonging to the network, while z is the coordination number of each site of the 
lattice where the network is embedded. 

In other words the mypoic ant, defined by ( 1 )  and (4a), moves in one of the N N  

sites of its present position at each time step. The blind ant at each time step tries to 
jump on one of all possible N N  sites ( z  in our case): if the site belongs to the network 
then it will be the new position of the ant otherwise the ant remains where it was. 
Figure 1 shows possible walks for the two types of ants. 

0 x x  * x  x x  . x x  X x x  . 

. . 0 . 
0 0 X x x  X X X e . 

Io1 Ibl 
Figure 1. Subsets of a lattice where the ants can move only between nearest-neighbour 
sites which are available ( e ) .  Possible 18-step walks for the myopic and blind ant are 
shown in ( a )  and ( h ) ,  respectively. In counting the steps for the blind ant one has 
also to take into account for the trials (represented by closed loops) to go to non-available 
sites (x ) .  

+ More generally we could consider all w,, multiplied by a constant factor w. Looking at (3)  one easily 
recognises that the new solution can be expressed in terms of the old one as [ ( l + w ) / ( ~ ' + w ) ] P , ( w / w ) .  
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To show the equivalence of the two problems in the large-time limit it is convenient 
to introduce the following definitions: 

w,  = 1 -E w , ,  ( 5 )  
i 

G , ( w )  = ( 1  -“) l + W  P , ( w ) .  

Equation ( 3 )  can be rewritten as 

The (formal) solution of ( 7 )  can be expressed as a weighted sum over oriented 
walks W joining the initial and  final sites xo and x respectively. If we represent an 
n-step walk W as the sequence of visited sites (xo, x l ,  x 2 , .  . . , xn = x)  where x, and 
x , , ~  are N N  and belong to the networkt then the weight associated to W is 

For the diffusion processes under consideration we have 
n - 1  

Pplv’(w)= n [z , , ( l+w)] - ’  
, = o  

and 

where, from now on, the superscript will distinguish between myopic (m) and blind 
(b) ants. The set of walks, over which the sum in (9) runs, is the same for the two 
ants. Indeed it is just the set of walks of the myopic ant. 

Apart from the trivial case in which the initial site is not surrounded by available 
sites (z,= 0 implies p,(n) = ax, independently of n )  we have 1 s z,  c z for each site 
visited by the walk. 

Thus the following inequalities are an  immediate consequence of ( 10): 

9 $ y ( z w ) s  Y $ ’ ( W ) S  a $ ’ ( w )  (11) 
which imply analogous inequalities for the G, while, using ( 5 )  and (61, we obtain for 
the P, 

l + W  

1+zw 
P:”(zw)sPjlb’(w)sz- P:m ’( W ) . 

Let us define the mean-square displacement as 

w (RZ(w))‘” = c ( x  - x 0 ) Z P j : ’ ( w )  - 
1 l + W  

(12) 

t Of course, a given site can appear more than one time in the sequence. 
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where i denotes m o r b  and the last factor takes into account the normalisation condition 

W + l  
P C ) ( w ) = -  

X w 

which is a consequence of ( 3 ) .  From inequalities (12) and equation (13) it follows that 

(R2(0))"'  ( R 2 ( z w ) ) " ' S  z ( R 2 ( w ) ) ' b ' s  z - l + w  
1 + z w  

which holds in general for the average of any positive function f x .  Of course (15) will 
be valid also after averaging over the random network and over the initial site xo; we 
shall not introduce new notations for these last averages and from now on they will 
be understood. If we assume scaling in the standard fashion, i.e. at low w,  the 
mean-square displacement and autocorrelation function behave as 

(16) 
- 2 J ' )  ( R 2 ( u ) y i ) -  w 

Thus the myopic and blind ants have the same asymptotic behaviours. More 
generally one could foresee the possibility that in (16) and (17) there appear some 
power of Iln 0.1 to multiply the leading behaviours. However, inequalities (12) and 
(15) would imply that these corrections are also the same for the two diffusion processes. 
This concludes the proof. 

The exponent v is known as the inverse of the walk fractal dimension d, while d,  
has been called fracton or spectral dimension (Alexander and Orbach 1982, Rammal 
and Toulouse 1983) and, in general, it is different from the fractal dimension df of the 
structure on which the diffusion takes place. These exponents are not all independent 
but 2df/d, = d,  (Alexander and Orbach 1982) which is an intrinsic property of the 
fractal structure. 

Summarising, we proved that two diffusive processes on a fractal, known as the 
myopic and blind ant in the labyrinth (Mitescu and Roussenq 1983; see also Majid et 
a1 1984) define asymptotically the same set of critical indices. 

We should stress, however, that at variance from what occurs on lattices with 
uniform coordination, i.e. z, independent on x, all walks of the same length do not 
have the same statistical weight (see equations (10)). One can show on specificexamples 
(Maritan 1987) that the set of all walks of a given length n with each walk equally 
weighted in the averages defines a new set of exponents characterising the entropy 
and the mean end-to-end distance of the walks in the large-n limit. 

After this paper was completed the authors became aware of a preprint by Harris 
et a1 (1987) in which the same problem has been discussed. Among other results it is 
proved under rather plausible assumptions that the two ants have the same asymptotic 
behaviour. 

+ In terms of discrete time, (161 and ( 1 7 )  mean that at large n ( R 2 ( n ) ) " ' =  X, ( x  - , ~ ~ ~ ) ' p \ ! ' ( n ) -  n2"" and 
p $ : ( n )  - n - d ' , " ' 2  respectively. 
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